
STW proposal ITALIA 1

1 Contact details

Applicants Main applicant Co-applicant
naam, voorletters en titel Vaandrager, F.W., prof.dr. Tretmans, G.J., dr.ir.
organisatie Radboud Universiteit Nijmegen Radboud Universiteit Nijmegen
telefoonnummer 024 - 365 2216 024 - 365 2069
e-mail F.Vaandrager@cs.ru.nl tretmans@cs.ru.nl
aanstellingspercentage 100% 20%
vast dienstverband ja ja

Title: Integrating Testing And Learning of Interface Automata (ITALIA)
Keywords: software, state machines, machine learning, model inference, testing, embedded con-
trollers, network protocols

2 Summary

2.1 Research Summary
Humans often manage to learn the behavior of a device or computer program by just pressing
buttons and observing the resulting behavior. Especially children are very good in doing this
and know exactly how to use a game computer, iPod or microwave oven without ever consulting a
manual. In such situations we construct a mental model of a state diagram: we determine in which
global states a device can be and which state transitions and outputs occur in response to which
input. This research proposal deals with the design of algorithms that will allow computers to
learn complex state diagrams by providing inputs and observing outputs. The state diagrams that
can be learned by current techniques have at most 30.000 states. In contrast, the state diagrams
that govern the behavior of computing based systems (defined using dozens of state variables)
typically have more than 101000 states. This year we obtained a breakthrough in learning large
state diagrams in collaboration with prof. Jonsson from the University of Uppsala: based on
some global information about how an application handles data, our algorithm learned models of
some realistic communication protocols (TCP, SIP and the new biometric passport). The research
objective of the ITALIA project is to further develop this technique and to construct a tool set
that will allow us to learn — routinely and fully automatically — state diagrams with up to 40
state variables. Our project is unique in bringing together research on automata learning with
research on machine learning, model based testing, and computer-aided verification.

2.2 Utilisation Summary
Once they have high-level models of the behavior of software components, software engineers can
construct better software in less time: behavioral models can be used to simulate a system and
reason about it, they allow all stakeholders to participate in the development process and to
communicate with each other, they can be used to generate and test implementations, and they
facilitate reuse. A key problem in practice, however, is the construction of models for existing
software components, for which no or only limited documentation is available. The solution that
the ITALIA project will provide is technology that will allow engineers to infer state diagrams
models fully automatically through observations and test, that is, through black box reverse
engineering. We expect that our technology will be particularly effective for control oriented
applications such as embedded controllers and network protocols. The ITALIA project will focus
on the utilisation of model inference technology within the area of testing: once we have learned
a model of a software component, we will use model checking technology to analyze this model
(e.g. to detect security vulnerabilities) and the technology of model based testing to automatically
infer test suites. Using these test suites we can then check, for instance, (a) whether no new faults
have been introduced in a modified version of the component (regression testing), (b) whether
an alternative implementation by some other vendor agrees with a reference implementation, or
(c) whether some new implementation of legacy software is correct. The development of our
inference/learning technology will be driven by challenging case studies from a number of areas:



STW proposal ITALIA 2

embedded systems (Axini), secure transaction systems (Collis), internet protocols (NLnet Labs),
printers (Océ-technologies) and wireless sensor networks (Chess). We will fully integrate our
technology with the Axini TestManager, a commercial model based testing tool, and evaluate the
effectiveness of our technology by a comparison with the commercial testing platforms of Axini
and Collis. Our goal is to reach the point where it becomes interesting for commercial parties,
including Axini and Collis, to integrate our technology within their testing tools.

2.3 Research Samenvatting
Mensen slagen er vaak in om het gedrag van een apparaat of computerprogramma te leren puur
door op knoppen te drukken en het resulterende gedrag te observeren. Vooral kinderen zijn hier
goed in en weten precies hoe ze een game computer, iPod of magnetron moeten bedienen zonder
ooit een handleiding te hebben geraadpleegd. In dit soort situaties construeren we mentaal een
toestandsdiagram: we weten in welke toestanden een apparaat of programma zich kan bevinden
en welke toestandsovergangen plaatsvinden als gevolg van welke invoer. Dit onderzoeksvoorstel
gaat over de vraag hoe we computers zover kunnen krijgen dat ze zelf, door systematisch knoppen
in te drukken en de resulterende uitvoer te observeren, complexe toestandsdiagrammen kunnen
leren van apparaten of programma’s. Bestaande algoritmen slagen er in om toestandsdiagrammen
te leren met maximaal 30.000 toestanden. Deze algoritmen zijn niet direct toepasbaar voor het
leren van het gedrag van realistisch ICT toepassingen, aangezien deze toepassingen beschikken
over geheugen en er bij invoer- en uitvoeracties ook vaak sprake is van data parameters (tele-
foonnummers bij een mobieltje, de kooktijd in minuten bij een magnetron, enz.) Zelfs wanneer
we uitgaan van een simpel apparaat met een geheugen van slechts 450 bytes, dan heeft het re-
sulterende toestandsdiagram potentieel meer dan 256450 ≈ 101000 toestanden. Toch zijn wij er
in recente experimenten voor het eerst in geslaagd om toestandsdiagrammen te leren van enkele
veelgebruikte communicatieprotocollen (SIP, TCP en het nieuwe biometrische paspoort). In het
bijzonder de toestandsruimte van SIP is astronomisch groot met 17 toestandsvariabelen (waaron-
der diverse integers van 32 bits, character strings van 200 bytes, enz). Bij onze experimenten
moest de gebruiker nog zelf globale informatie aanleveren over hoe het te leren systeem omgaat
met datavariabelen. Wetenschappelijk doel van dit project is de nieuwe technieken verder te
ontwikkelen en software te ontwikkelen waarmee we — routinematig en volledig automatisch —
toestandsdiagrammen kunnen leren met tot 40 toestandsvariabelen. Wij denken dat dit mogelijk
is door diverse bestaande theorieen te combineren (grammaticale inferentie, testtheorie, machine
learning, en computerondersteunde verificatie).

2.4 Utilisatie Samenvatting
Indien ontwikkelaars van software beschikken over modellen van het gedrag van software com-
ponenten, dan stelt dit ze veelal in staat om betere software schrijven in minder tijd. Modellen
kunnen bijvoorbeeld worden gebruikt om een systeem te simuleren voordat het wordt gebouwd,
bij besprekingen tussen belanghebbenden, voor het automatisch genereren van software, voor het
automatisch genereren van tests, en bij hergebruik van software. Bij de ontwikkeling van nieuwe
systemen worden er daarom tegenwoordig vaak modellen geconstrueerd, bijvoorbeeld in de taal
UML. Het construeren van modellen voor bestaande softwarecomponenten, waarvan veelal geen
of geen goede documentatie beschikbaar is, vormt in de praktijk echter een enorm probleem. De
oplossing die het ITALIA project wil leveren bestaat uit technologie waarmee een belangrijke
klasse van modellen, namelijk toestandsdiagrammen, automatisch kunnen worden geleerd door
“black box” interactie met de software. Wij denken dat onze technologie zeer effectief kan zijn
voor softwarecomponenten die zich richten op besturing (‘control’), zoals netwerk protocollen en
besturingssoftware voor embedded systemen. Het ITALIA project wil zich primair richten op de
ontwikkeling en toepassing van leertechnologie voor het testen van software: wanneer een model
van een softwarecomponent is geleerd, dan willen we dit model eerst automatisch analyseren
(om bijvoorbeeld security problemen op te sporen) en vervolgens automatisch tests genereren
uit het model. Deze tests willen we dan gebruiken om vast te stellen of (a) er nieuwe fouten zijn
gëıntroduceerd bij het aanpassen van de software (“regressietesten”), of (b) een implementatie van



STW proposal ITALIA 3

de software door een andere producent hetzelfde gedrag vertoont als een referentie-implementatie,
of (c) een nieuwe implementatie van verouderde “legacy” software correct is. Bij de ontwikkeling
van onze leertechnologie willen we ons laten leiden door uitdagende industriële case studies uit een
aantal gebieden: embedded software (Axini), systemen voor veilige transacties (bijv. electronisch
betalen), internet protocollen (NLnet Labs), besturingssoftware voor printers (Océ-Technologies)
en draadloze sensornetwerken (Chess). Wij willen onze leertechnologie volledig integreren met
de Axini TestManager, een commercieel software pakket voor modelgebaseerd testen. Tevens
willen we de effectiviteit van onze technologie evalueren door een vergelijking met commerciële
test platforms van Axini en Collis. Ons doel is om deze leertechnologie zover te ontwikkelen dat
het interessant wordt voor commerciële partijen (i.h.b. Axini en Collis) om het te integreren in
hun testplatforms.

3 The research group

Name Specialism hrs/week
prof.dr. F.W. Vaandrager (applications of) computer aided verification 6
dr.ir. G.J. Tretmans model based testing 2
drs. F. Aarts PhD student, active learning of automata 40
NN PhD student, validity queries and test coverage 40

Frits Vaandrager will act as project leader+promotor of the PhD students. Jan Tretmans will take
care of the daily supervision of the second PhD student. Fides Aarts is an excellent candidate
for the first PhD position within the ITALIA project. She obtained her MSc degree in Computer
Science at the Radboud University in December 2009 with the distinction “cum laude”. Her master
thesis research [Aar09] on automata learning was carried out at the University of Uppsala under
supervision of prof. Bengt Jonsson, a well-known specialist in this area. She coauthors publication
[AV10], that has been presented at CONCUR’10 (acceptance rate 33%), publication [AJU10],
that will be presented at ICTSS (acceptance rate 27%), and publication [ASV10], that will be
presented at ISOLA’10. Aarts has a temporary position until early 2011 within the European
Quasimodo project. This proposal intends to secure a PhD position for Aarts after Quasimodo.

4 Scientific description

4.1 Research contents/Introduction
4.1.1 Motivation In our daily life, we frequently infer simple state diagrams (also known as
state machines, automata, transition systems [Kel76], I/O automata [LT87] or interface automata
[dAH01])1 with up to a dozen states. We quickly infer dynamic models of gadgets such as mobile
phones by just pushing buttons and observing the resulting behavior. A major challenge is to let
computers perform similar learning tasks in a rigorous manner for systems with large numbers of
states. Tools that are able to infer large state machine models automatically by systematically
providing inputs and observing the resulting outputs will have numerous applications in different
domains. In particular they will help us to understand and analyze the behavior of software and
hardware components.

4.1.2 State-of-the-art The fundamental problem of inducing, learning or inferring automata
and (more generally) grammars has been studied for decades. Moore [Moo56] first proposed
the problem of learning automata, provided an exponential algorithm and proved that the prob-
lem is inherently exponential. Only in recent years grammatical inference a.k.a. grammar in-
duction has emerged as an independent field with connections to many scientific disciplines, in-
cluding bio-informatics, computational linguistics and pattern recognition [Hig10]. Grammat-
ical inference techniques aim at building a grammar or automaton for an unknown language,
given some data about this language. Also recently, some important developments have taken

1At the technical level these terms have slightly different meanings, but in this proposal we use them as synonyms.



STW proposal ITALIA 4

place on the borderline of verification, model-based testing and grammatical inference, see e.g.
[BGJ+05, Leu06, RSBM09], and researchers have shown that it is possible (at least in principle)
to infer models of software components. In passive learning the goal is to infer a grammar or
automaton from a given set of data, whereas in active learning a model of a system is learned by
actively performing experiments on that system.

The most efficient techniques use the setup of active learning and assume that a learner infers
a state diagram through interaction with a teacher. The well-known L∗ algorithm of Angluin
[Ang87], for instance, assumes that the teacher knows a (finite) state machine M. The learner
(initially) only knows the set of actions and her task is to learn a machine that is equivalent
to M. The teacher will answer two types of questions: membership queries (“is string w in
the language accepted by M”) and equivalence queries (“is a hypothesized machine H correct,
i.e., equivalent to the machine M?”). In case of a no-answer, the teacher will also provide a
counterexample that proves that the learner’s hypothesis is wrong, that is, a distinguishing word
from the language. A typical behavior of a learner is to start by asking a sequence of membership
queries. The learner maintains an observation table to systematically record the answers of the
teacher. If the table satisfies certain “stability” conditions, the learner can extract a hypothesis
H, a minimal finite state machine that is consistent with the answers received thus far. If H
is equivalent with M then the learner has succeeded. Otherwise the returned counterexample
is used to update the observation table and the learner poses new membership queries until
converging to a new hypothesis, etc. After posing a polynomial number (in the size of the resulting
model) of queries, the algorithm terminates with a final hypothesis H that is equivalent to M.

Figure 1: Active learning of reactive systems

Figure 1 illustrates how active learning can be
used to obtain models of reactive systems. The
core of the teacher now is an SUT (System Un-
der Test), a (physical) system to which we can
apply inputs and whose outputs we may observe.
The learner interacts directly with the SUT to in-
fer a model. Rather than membership queries, the
learner poses output queries2: “which sequences of
output events results from a given sequence of in-
put events?” Also, equivalence queries are replaced
by the (more general) notion of validity queries: “is
a given hypothesized model a valid model of the
SUT?” Since the SUT cannot respond to validity
queries, the teacher is also equipped with a tool for
model based testing (MBT). Given a hypothesized
model, this tool “approximates” a validity query by
generating a long test sequence using some model based testing algorithm. If the SUT passes this
test, that is, the output that is generated by the SUT agrees with the output predicted by the
model, then we assume that the model is valid. If the output of the SUT is different from the
output of the model, this constitutes a counterexample that is forwarded to the learner. Hence,
the task of the learner is to collect data by interacting with the SUT and to formulate hypotheses,
and the task of the MBT tool is to test the validity of these hypotheses.3 Note that in this setting
the teacher, in general, is not perfect: due to incomplete coverage, it may occur that the SUT
passes the test for a hypothesis H, even though it does not conform to H.

Competitions for tools for grammatical inference such as Zulu4 typically focus on (randomly
generated) state machines with around 100 states and 20 symbols. LearnLib [MNRS04, RSB05,

2They are called “translation queries” by Vilar [Vil96].
3There is an instructive analogy with the elements of a scientific method. According to the standard definitions,

see e.g. http://en.wikipedia.org/wiki/Scientific method, a scientific method consists of the collection of data
through observation and experimentation, and the formulation and testing of hypotheses. Thus one may argue that
the Learner and the MBT tool together behave as a “scientist”, be it in an extremely small universe.

4See http://labh-curien.univ-st-etienne.fr/zulu/



STW proposal ITALIA 5

RSBM09, RMSM09], the winner of the 2010 Zulu competition [HSM10], is currently able to
automatically learn state machines with up to 30.000 states. LearnLib implements both an Angluin
style observation table technique for learning state machines, and standard algorithms for model
based testing such as state cover, transition cover, W-method, and the UIO method (see [LY96]).
The tool has been applied successfully to learn computer telephony integrated systems [HNS03].
The work on LearnLib indicates that learning of practical systems becomes within reach.

Still, practical systems are usually much larger, both in terms of the number of states (just 450
bytes of state variables potentially induces a state space of more than 101000 states) and in the
number of actions (due to data parameters in messages). This year, together with prof. Jonsson
from Uppsala University, we obtained a breakthrough in learning models of large state machines
[Aar09, AJU10]. The main idea is to place a so-called mapper A in between the SUT M and
the learner, which transforms the interface of the SUT by an abstraction that maps (in a history
dependent manner) the large set of actions of the SUT into a small set of abstract actions. By
combining the abstract machine H learned in this way with information about the mapper A, we
can effectively learn an over-approximation of the behavior of SUT M. Roughly speaking, the
learner is responsible for learning the global “control modes” in which the system can be, and
the transitions between those modes, whereas the mapper records some relevant data variables
(typically computed from the parameters of previous input and output actions). The approach
has been inspired by ideas from predicate abstraction [LGS+95], which has been successful for
extending finite-state model checking to larger and even infinite state spaces. Currently, the
mapper has to be provided by the user, based on a priori knowledge of the SUT. The feasibility of
the approach has been demonstrated by learning models of (fragments of) realistic protocols such
as SIP and TCP [Aar09, AJU10], and of the new biometric passport [ASV10]. The learned
SIP model is an extended finite state machine with 29 states, 3741 transitions, and 17 state
variables with various types (booleans, enumerated types, (long) integers, character strings,..).
This corresponds to a state machine with a (larger than) astronomical number of states and
transitions, thus far fully out of reach of automata learning techniques.

4.1.3 Scientific objective The scientific objective of the ITALIA project is to further develop
the abstraction technique of Aarts, Jonsson and Uijen [AJU10] and to construct a tool set that
will allow us to learn — routinely and fully automatically — state diagrams of simple but realistic
ICT applications and software. We will implement the developed algorithms and techniques on
top of the LearnLib tool and within state-of-the-art MBT tools, leading to a tool set that can
learn state machine models with up to 40 state variables and messages with up to 10 parameters,
provided that the operations on the data are simple (boolean operations, basic arithmetic, list
processing,..) or known beforehand.5

4.1.4 Research approach
Learning models using abstraction The approach of [AJU10] is fully automatic, except that
the mapper has to be provided by the user based on a priori knowledge of the SUT. In practice,
defining the mapper is typically not too hard and only requires a few iterations. The essence
of these iterations is to eliminate nondeterminism introduced through abstraction. As explained
below, we think we can automate also this part of the learning process. The observation table
technique used by LearLib currently only works for fully deterministic systems: if, during the
observation phase, a certain sequence of inputs induces two different sequences of outputs then
the tool immediately stops learning and reports an error.6 Typically, nondeterminism will arise
when we apply abstraction: it may occur that the behavior of an SUT is fully deterministic
but that due to the mapper (which, for instance, abstracts from the precise value of certain

5These estimates are based on the current performance of LearnLib and the Daikon tool for detection of likely
invariants. Further improvements of these tools will allow us to learn more complex state machine models.

6Angluin-style learning of non-deterministic finite-state automata (NFA) is studied in several papers, see for
instance [Yok94, BHKL09]. However, the motivation for this work is to obtain concise representations of the
learned models: in general a deterministic finite-state automaton (DFA) might be exponentially bigger than (an
equivalent) NFA. In the setting of [Yok94, BHKL09] the teacher still behaves deterministically.



STW proposal ITALIA 6

input parameters), the system appears to behave nondeterministically from the perspective of the
learner. If the abstraction is too coarse and the resulting system behaves nondeterministically from
the learner’s perspective, then the abstraction has to be refined in order to eliminate the source
of this nondeterminism. We intend to formalize this refinement step in terms of a counterexample
guided abstraction refinement (CEGAR) procedure, similar to the approach developed by Clarke
et al [CGJ+03] in the context of model checking. Very recently, Howar at al [HSM11] developed
and implemented such a CEGAR procedure for the special case of a learning setting in which
the abstraction is static and does not depend on the execution history. In order to extend to the
general (and more complicated), dynamic setting, we intend to use results from the area of machine
learning on dynamic detection of likely invariants, in particular the Daikon tool [EPG+07]. Based
on the outcomes of previous experiments, the learning algorithm needs to be able to see, for
instance, that the third parameter of the second output action equals the first parameter of the
first input action, or that the last parameter of an output action is a counter that is incremented
modulo 8. Daikon is able to spot such relationships between variables. We also expect to benefit
from earlier work of Grinchtein et al [GJP06] on learning timed automata, the work of Lorenzoli
et al [LMP08] on passive learning of extended finite state machines, and results on model based
testing of systems with data, e.g. the work of Campbell et al [CGN+05] on Spec Explorer, the
work of Frantzen et al [FTW06] on testing symbolic transition systems, the work of Koopman et
al [KATP03] on Gast, and the work of Claessen et al [CSH10] on QuickSpec.
Validity queries and test coverage When we compose the abstract state machine and mapper
inferred using the techniques outlined in the previous paragraph, we obtain a large, extended finite
state machine which, in general, is highly nondeterministic. Our task becomes to test whether
this large state machine is a valid model of the SUT at hand. In recent work, we have shown
that the so-called ioco relation arises naturally as a general notion of validity in a learning setting
[AV10]. The ioco relation has been proposed earlier by co-applicant Tretmans as the basic notion
of conformance [Tre96, Tre08] for transition system based models and forms the semantic basis
for many model based testing tools. This link opens up the possibility to use state-of-the-art MBT
tools for answering validity queries generated by our learning algorithms.

Once we allow for nondeterminism in models, there is no longer a unique valid model, but a
class of them. Within this class one model can be “better” or “closer” to the SUT than another
one, e.g., being less abstract and containing more precise details. We intend to formalize the notion
of one model being “more precise” than another model, possibly using the notion of alternating
simulation of [dAH01]. Approaches include relating different hypothesized models, e.g., by model-
based testing of models, and specification-based mutation analysis, i.e., investigating by validation
queries, the sensitivity of a model’s validity with respect to small model mutations.

For large, nondeterministic systems model-based testing is never exhaustive, which means that
any validity query introduces uncertainty. The aim is to measure and quantify this (un)certainty in
order to assess the quality of the hypothesized model, as well as to optimize the model-based testing
process in order to minimize the probability of accepting a non-valid hypothesized model. This is
analogous to the problem of test coverage (specification coverage) and test selection from model-
based testing, and our research will be inspired by results in that area, but extensions are needed.
First, we consider the area of test coverage and test selection for model-based testing still immature
and not practically applicable, in particar not for our domain of large, nondeterministic automata.
Second, model learning is different from model-based testing in that now the model is the varying
object and not the system under test. This opens new possibilities like specification-based mutation
analysis, as described above. Our extensions will be inspired by basic, existing notions for state-
model coverage such as state- or transition coverage, and, more importantly, by more sophisticated
approaches like metric- (distance-, weight-) based approaches [Bri93, FGMT02, ST09, ACV93,
KNSP09].
Nondeterminism of the SUT Modern systems are often multithreaded if not distributed.
Controlling and observing those systems is a very difficult task and often requires complex testing
architectures. Therefore, ioco theory and many MBT tools do not assume that it is possible to
control the nondeterminism (that is, the scheduling of the SUT). Instead, they only observe the



STW proposal ITALIA 7

behavior of the SUT and generate test strategies that try to cover as much as possible of the
behavior of the SUT. The challenge therefore is to extend existing learning techniques to a setting
of nondeterministic systems.

In practice, we often encounter systems (e.g. the biometric passport and the DNS protocol)
whose normal behavior is deterministic, but which may exhibit nondeterministic behavior due to
exceptions (e.g. a timeout because of long computations or network overload). As a first step we
intend to implement a straightforward —but practical— extension of our approach in which we
simply do not explore the behavior of a system after the occurrence of an exception.

As a second, more ambitious step we intend to extend existing learning techiques to nondeter-
ministic systems. Here we expect to benefit from the links between learning and testing. There
exists e.g. a close correspondence between the classical theory of conformance testing for deter-
ministic state machines and the automata learning algorithms that have been implemented in
LearnLib. In [BGJ+05], it is shown that the observation table technique of Angluin [Ang87] and
the variant of it used by LearnLib is strongly related to the W-method for testing of [Cho78], and
the observation pack learning technique of [BDG97] is closely related to a conformance testing
technique described in [LY96]. Our plan is to adopt existing theory for testing nondeterminis-
tic systems, see e.g. [ACY95, NVS+04, VRC06], to the learning setting. Both in testing and
in learning we want to drive the SUT to certain states in order to explore the behavior of the
SUT from those states. Hence we may for instance reuse the game theory based algorithms of
[NVS+04, VRC06] that compute optimal strategies to drive a nondeterministic SUT to certain
states while at the same time minimizing the costs of traversal. We also expect to benefit from
the work of Willemse [Wil07].
Integration of inference techniques The main scientific research topic of ITALIA is regular
inference techniques in the spirit of Angluin and LearnLib. Yet, combinations with other learning
techniques are important in order to choose the best cocktail of techniques for obtaining a model
for a specific system. These learning techniques include passive learning [ARV+10, Ver10, MP05,
LMP08, Dal10], inference of automata using homing sequences [RS89] (useful in situations in which
the SUT can not be “reset”), black box checking [PVY02], the incremental (sequential) learning
approach of [Mei10], other behaviour learning techniques [KPGSG09, BHKL09], and inclusion in
the learning process of extra information in the form of mappers (as in [AJU10]), component-,
partial-, aspect-, or structural models.

The goal of this research line is to combine different, complementary learning techniques in an
effective way. This does require an overview of and insight in various existing techniques, and how
they combine with our Angluin/LearnLib inspired approach, but it is not the intention to develop
many new techniques, nor to develop a framework or taxonomy for all kinds of learning techniques.
The approach will be experimental and case-study driven: based on a case study combinations of
learning techniques are chosen that give the best solution for that particular case study.
Case studies Within ITALIA we intend to follow a research methodology in which tools are
applied to challenging cases, the experience gained during this work is used to generate new
theory and algorithms, which in turn are used to further improve the tools. The main reason why
practical case studies are so important, also in the early stages, is that even though the theoretical
complexity of learning is prohibitively large, learning of practical systems is often feasible since the
behavior of these systems exhibits a certain regularity that can be exploited by analysis techniques.
Tooling We have set up a close collaboration with the group of prof. Steffen at the University of
Dortmund, which has created and maintains the LearnLib tool. Currently, Learnlib is in charge
both of formulating hypotheses and testing them. Given the fact that there are many model based
testing tools available, both academic and commercial, and there is an active research community
working in this area, we intend to use existing MBT tools for the task of testing hypotheses, thus
restricting the use of LearnLib to the construction of hypotheses. Since LearnLib has been designed
as an open tool, it should be easy to interface Learnlib with almost any MBT tool. Initially, we
intend to experiment with our own MBT tools TorX and Torxakis, and the JTorX tool from
Twente, but we will also interface to testing tools used by our industrial partners. In particular
we want to use the MBT tool platform of our partner Axini B.V., the Axini TestManager.



STW proposal ITALIA 8

4.2 Existing infrastructure
Most of the research will take place at the Institute for Computing and Information Sciences (ICIS)
of the Radboud University Nijmegen. ICIS will provide basic computer hardware and software
infrastructure for the ITALIA project. The user committee members will provide infrastructure
for doing the case studies: specific systems (SUTs) for which we want to learn models, and the
interfaces that allow out tools to interact with those systems. Some of the case studies and
experiments will be carried out at the premises of the user committee members. For collaboration
with the academic partners from Dortmund and Uppsala, longer research visits are planned.

4.3 Time plan and division of tasks
The total project duration is 4 years. The last 6 months of the project will be reserved for
completion of the PhD theses of the two students. Following the description in Section 4.1.4, we
identify 5 tasks for the initial 42 months. We view the implementation of new algorithms and the
development of tool interfaces as an integral part of the other activities, and have decided not to
introduce a separate task on tooling.
Task 1: Learning models using abstraction. PhD student 1 will spend 75% of her research
time on this task during M1-18, and 25% during M19-42.
Task 2: Validity queries and test coverage. PhD student 2 will spend 75% of her research
time on this task during M1-18, and 25% during M19-42.
Task 3: Nondeterminism of the SUT. Both PhD students will spend 50% of their time on
this task during M19-30.
Task 4: Case studies. We intend to do one new case study every 6 months until M42 of the
project. During this period, approximately 25% of the research time of both PhD students will be
devoted to this task. During the initial phase of the project, we may only be able to learn simple
and abstract models, and we may have to (partially) define the mappers manually. When the
project progresses and our tools and techniques become more powerful, we may decide to revisit
some of the early case studies.
Task 5: Integration of inference techniques. Both PhD students will spend 50% of their
time on this task during M31-42. The specific topics that will be addressed will be determined by
the needs arising from the case studies that are carried out in that period.

5 Utilisation plan

5.1 The problem and the proposed solution
According to a recent survey [VVP10], the software sector is very important for our country. With
a turnover of 25 billion euro it contributes 2.8% to the Dutch economy. Excluded from the survey
are all the software related activities within the Dutch high tech systems & materials industry,
which has an estimated turnover of 74 billion euro [OHM10]. Clearly, software and ICT play a
crucial role in many high tech systems. In today’s automotive industry, for instance, 90% of the
innovations are ICT related and it is estimated that ICT is responsible for 48% of the development
costs of cars. New techniques that help us to develop better software in less time may therefore
have enormous benefits for our society and economy.

Model-based system development is becoming an increasingly important driving force in the
software and hardware industry. In this approach, models become the primary artifacts through-
out the engineering lifecycle of computer-based systems. Requirements, behavior, functionality,
construction and testing strategies of computer-based systems are all described in terms of (graph-
ical) models. These models are not only used to simulate a system and reason about it, but also
to allow all stakeholders to participate in the development process and to communicate with each
other, to generate implementations (semi-)automatically, to test implementations, and to facilitate
reuse. Once we have high-level models of designs, there are many nice things engineers can do with
these models, allowing them to construct better software in less time. For instance, according to
Orbons [HM06], the “Happy flow” model developed within the Boderc project (in which we par-



STW proposal ITALIA 9

ticipated) enabled Océ to skip at least one complete physical machine-build iteration (saving many
man-years of effort), because paper path designs could now be explored virtually. The construc-
tion of models typically requires specialized expertise, is time consuming and involves significant
manual effort, implying that in practice often models are not available, or become outdated as the
system evolves. In practice, 80% of software development involves old (legacy) code, for which only
poor documentation is available. Manual construction of models of legacy components is typically
very labor intensive and often not cost effective (if possible at all). A key problem therefore is to
obtain models for existing software component [Tre07].

The solution that the ITALIA project will provide is technology to infer models automatically
through observations and test, that is, through black box reverse engineering. We expect that
our technology will be particularly effective for control oriented applications such as embedded
controllers and network protocols. As outlined in the scientific part of this proposal, we expect
to be able to deliver a tool that can routinely learn state machine models with up to 40 state
variables and messages up to 10 parameters, provided that the operations on the data are simple
(boolean operations, basic arithmetic, list processing,..) or known beforehand. Such a technology
will have numerous potential applications. The ITALIA project will focus on applications of model
learning technology within the area of testing, since we expect this to be the first area where it will
becomes commercially interesting to apply and further develop this technology. More specifically,
three types of applications will be pursued within the ITALIA project:
1. Regression testing. Experience shows that as software is fixed or enriched with new function-
ality, emergence of new and/or reemergence of old faults is quite common. Regression testing is
any type of software testing that seeks to uncover software errors by partially retesting a modified
program. Using our technology, one may first learn a model of the original program, and then use
this model as input for state-of-the-art model based testing (MBT) technology to generate and
execute tests on the modified software. User committee member Axini will provide case studies
in this area, using its extensive network in the embedded systems area, which includes companies
such as Philips and TomTom.
2. Test suites based on reference implementation. Our society has become completely
dependent on the correct functioning of a variety of communication protocols which describe the
operation of the internet, communication in cars and airplanes, handling of financial transactions,
communication with smart cards, etc (TCP/IP, WAP, CAN, Bluetooth, OV-chip card, biometric
passport, ..). When new protocols are being developed, for instance by the Internet Engineering
Task Force (IETF), typically a reference implementation is constructed. This is an implementation
that is to be be used as a definitive interpretation for the specification of the protocol. During the
development of a conformance test suite, at least one relatively trusted implementation of each
interface is necessary to discover errors or ambiguities in the specification, and to validate the
correct functioning of the test suite. Using our technology, it becomes possible to automatically
infer a state machine model of a reference implementation, and to use that model as input for an
MBT tool to automatically infer a conformance test suite. Increasingly, hackers attack computer
systems by exploiting vulnerabilities in protocol implementations. They send the wrong messages
at the wrong time or apply a technique called fuzzing [GLM08] in which messages are mutated
by flipping bits at random or moving fields of the messages around. The behavior of our learning
algorithms is very similar to that of a hacker (although the objectives are opposite!): learning
algorithms also provide any possible input in any possible state in order to construct a model.
Learning models — in combination with subsequent analysis of these models using simulation or
model checking — may help to establish that reference implementations are secure. In summary:
application of our technology will lead to (a) the discovery of security vulnerabilities, (b) improved
test suites, and (c) saving of time (and money) when reference implementations are extended. User
committee members Collis and NLnet Labs will provide case studies in this area (initial case studies
will concern secure transaction systems and DNSSEC protocol, respectively).
3. Legacy software is old software that continues to be used because it serves the users’
needs, even though better technology is available. Typically the source code of legacy software
is hard to read and poorly documented. If one needs to reimplement legacy software on a new
platform with modern software technology, a behavioral model of the legacy software will be



STW proposal ITALIA 10

useful, either as a basis for MBT of the new implementation, or to study interaction with newer,
modeled components, or to generate the new software automatically. User committee members
Océ-Technologies and Chess will provide case studies in this area, with focus on embedded control
software (initial case studues will concern printers and wireless sensor networks).

Our goal is to reach the point where it becomes interesting for commercial parties to integrate
our learning technology within their model based testing tools. The whole set-up of the project,
in which the development of inference technology is directly driven by a variety of industrial case
studies, has been designed to promote utilisation. As part of our work on the case studies proposed
by Axini, we will fully integrate our learning tool with the Axini TestManager: using an adaptor
provided by Axini, our learning tool will be able to communicate with the SUT and to construct
an hypothesized model; this model will then be translated to a form that can be read by the Axini
TestManager, allowing the TestManager to establish the validity of the model; if it turns out that
the model is not valid, the counterexample provided by the TestManager will be translated to a
form that can be read by our learning tool, thus inducing another cycle in the learning process.
Since the Conclusion Test Platform of Collis is not model based, an equally tight integration with
the Collis tools is not possible. However, using case studies and adaptors provided by Collis and
Axini, we want to compare the effectiveness of the test suites of Collis and Axini with the test
suites generated from our tools, in particular whether using our technology it is possible to find
bugs that previously remained undetected (and vice versa). The University of Dortmund and
the proposers intend to make the LearnLib tool and the extensions to it that will be developed
within ITALIA available (under a general public license agreement) to any party that is interested
to use it. Obvious candidates are our partners Axini and Collis, but we hope and expect that
within four years our technology will reach a level of maturity that also other companies will be
interested to integrate it in their testing tools. We intend to publish the basic algorithms for
automata inference and test coverage in leading international conferences such as CAV, TACAS,
MBT, ICST, ICTSS, ICGI and ICSE. In addition we intend to present our work at the regular
meeting places of academia and industry, such as the Nederlandse Testdag, the Embedded Systems
Day of Bits&Chips, and the ESI symposium. In this way, we intend to broaden the scope of
industrial applications of our technology, and to actively encourage other companies to integrate
our technology/algorithms within their tool environments. On the long run, the results of ITALIA
may contribute to an update of standards concerned with the development of critical systems (see
[BS93] for an overview) in which the use of formal methods is recommended or even required.

5.2 Potential users
The following companies/organizations have agreed to participate in the user committee. As
indicated in the attached support letters, all these users will contribute case studies to the project.
In addition, Axini and and Collis have committed an in kind contribution (see Section 8.5).

Company Contact Telephone e-Mail
Axini B.V. Machiel van der Bijl 06 16426332 vdbijl@axini.com
Collis B.V. Henk van Dam 071 5813636 Dam@collis.nl
Chess Marcel Verhoef 023 5149149 Marcel.Verhoef@CHESS.NL
NLnet Labs Matthijs Mekking 020 8884551 matthijs@NLnetLabs.nl
Océ-Technologies B.V. Lou Somers 077 3591917 lou.somers@oce.com

5.3 Past performance
The ioco-test theory of Tretmans has been implemented in various various model-based testing
tools, including the academic tools TorX [TB03], JTorX [Bel10], TGV [JJ05], STG [CJRZ02],
TestGen [HT99] Uppaal-Tron [HLM+08], and the Agedis Tool set [HN04], and the commercial
tool Axini Test Manager. The concepts defined in the PhD. thesis of Tretmans [Tre92] made it
to the international standard Formal Methods in Conformance Testing [Int97].

Using the results of the STW projects Côte de Resyste and Atomyste, Machiel van der Bijl, AiO
in Atomyste, started the spin-off company Axini in 2007 [Axi]. Axini markets the model-based test



STW proposal ITALIA 11

tool Axini Test Manager and provides consultancy and support in model-based testing. These two
STW projects also provided the know-how for consultancy and model-based testing of Interpay’s
payment box protocol for the Dutch highway road pricing system (contract between Interpay
N.V. and the University of Twente; 2000–2001). More recently, a new model-based testing tool
TorXakis developed using the results of the NWO project Stress, was applied for model-based
testing of the new Dutch electronic passport, commissioned by Ministerie van Binnenlandse Zaken
[MPS+09]. Currently, the technologies developed in Côte de Resyste, Atomyste and Stress are
used in projects with Chess B.V. (model-based testing of a wireless sensor network; in the context
of the EU FP7 project Quasimodo), and Océ (model-based testing of printer controller software;
in the context of the KWR project FATs Domino). Tretmans is also employed at ESI, where he
was and is involved in academic–industrial knowledge transfer in the projects Tangram (Model-
Based Integration and Testing of Complex High-Tech Systems; with ASML) [Tre07] and Poseidon
(System Evolvability and Reliability of Systems of Systems; with Thales).

Vaandrager has been and is involved in a large number of projects in which formal verifica-
tion and model checking technology is applied to tackle practical problems from industrial part-
ners, including the STW/PROGRESS project HAAST, the EU projects VHS, AMETIST and
QUASIMODO, and the ESI projects BODERC and OCTOPUS. Academic-industrial knowledge
transfer was/is very important in all these projects. As a tangible result of these projects, many
improvements to control software and communication protocols were suggested, which helped
to improve the quality of critical software systems. Examples are collaborations with Philips
[HSV94, BPV94, SV99, DGRV00, BSHV03, BGVZ10], ASML [HvdNV03, HvdNV06],
Chess [SZHV09, HSV09], Océ [IKY+08, AHI+09], NLnetLabs [MWVS07], and Cybernetix
Recherche [GV03]. The paper [HvdNV06] is referred to in patent application ASML ref. P-
1784.010. Vaandrager’s group has been and is closely involved in the use and development of the
timed automata model checker Uppaal, www.uppaal.com, see e.g. [BDL+06]. In part due to these
efforts, the Uppaal toolset is now routinely used for industrial case studies and has thousands of
users, both in academia and industry. Within the OCTOPUS project with Océ, we are currently
involved in the construction of a toolset for model-driven design-space exploration for embedded
systems [BvG+10].

6 Intellectual property
The proposed research is not constrained by any contract. Although not intended it could be that
some of the new concepts developed will be patented.

7 Positioning of the project proposal
7.1. Uniqueness of the proposed project. In the Netherlands there is an active research com-
munity in the area of (model-based) testing. Software test experts from academia and industry
meet each other regularly, for instance at the “Nederlandse Testdag”, http://www.testdag.nl
(Tretmans is in the steering committee), and at the Dutch Workshop on Formal Testing Tech-
niques. Thus far, the Dutch testing community has paid little attention to model inference. The
group of prof. Pieter Adriaans (UVA) has been working on grammatical inference from a lin-
guistic perspective [AJ06] using the minimum description length (MDL) principle. The size of
the automata that we are trying to learn is much larger. The group of prof. Wil van der Aalst
(TUE) is working on generating automata from logs “process mining”, which basically is a form
of passive learning [ARV+10]. Recently, Sicco Verwer, a PhD student of prof. Cees Witteveen
(TUD) completed a PhD thesis [Ver10] on passive learning of timed automata. In contrast to the
work at TUE and TUD, we focus on active learning. We have established close collaboration with
two internationally leading groups in the area of active learning of reactive systems: the group of
prof. Bernhard Steffen at the University of Dortmund and the group of prof. Bengt Jonsson at
the University of Uppsala. Collaboration with Dortmund centers on the use and further develop-
ment of LearnLib, whereas collaboration with Uppsala emphasizes the further development of the
abstraction techniques of [AJU10].



STW proposal ITALIA 12

The ITALIA project is unique in bringing together research on automata learning with research
on machine learning, model based testing, and computer-aided verification. The approach to use
abstraction mappings (developed by the applicants in collaboration with the team of prof. Jonsson
[AJU10]) is highly original and will enable the scaling of current learning tools that is required
to learn models of realistic applications. The project is also unique due to the involvement of
a number of industrial partners and research labs that are eager to contribute challenging case
studies that will boost the utilisation of the results, and the involvement of Axini B.V., and the
proposed integration of inference technology in the Axini Test Manager.
7.2. Embedding of the proposed project. The research will take place within the Model
Based System Development (MBSD) group of the Institute for Computing and Information Sci-
ences (ICIS) of the Radboud University Nijmegen. According to the 2010 research assessment
of Computer Science research at 9 Dutch universities, ICIS is the best CS department in the
Netherlands. Quality, relevance, and vitality & feasibility of the MBSD group were all rated as
excellent. The evaluation committee explicitly mentions the combination of machine learning and
verification, which we pursue in this proposal, as a promissing direction of research. Apart from
the expertise within the MBSD group on model based testing and model checking, we also expect
to benefit from the expertise of the Digital Security group of prof. Jacobs and the expertise on
machine learning in the groups of dr. Lucas and prof. Heskes.
7.3. Request for support elsewhere. On September 15, 2010, we have submitted a related
proposal to the Free Competition of NWO Physical Sciences. The NWO proposal focuses on the
theoretical foundations of abstraction techniques for regular inference. The ITALIA proposal is
much broader in scope since it also addresses coverage of model based testing techniques and
integration with other learning approaches, and puts much more emphasis on case studies and
utilisation. When both projects are accepted, they will mutually strengthen each other.

8 Financial planning
8.1. Personnel positions. We request funding for 2 full-time PhD positions for 4 years.
8.2. Consumables. In order to do the case studies, frequent visits to our industrial partners
will be required both to learn about these systems ourselves and in order to do experiments on
actual systems (SUTs). Based on 30 visits per year per PhD student and 10 visits per year per
supervisor a e30, plus e1,400 for attending courses we arive at a total of e11,600.
8.3. Travel abroad. For each PhD student we request funding of e2,000 per year to visits 2
or 3 international conferences and/or summerschools. In addition, we want to schedule a number
of visits of about 1 month each to collaborate with the teams of prof. Steffen and prof. Jonsson:
2 visits to Dortmund and two visits to Uppsala for PhD student 1, and 2 visits to Dortmund for
PhD student 1. Based on e2,000 for 1 month to Dortmund, and e2,500 for one month to Uppala,
this leads to a total travel budget of e29,000.
8.4. Investments. Not applicable.
8.5. Contribution from users. Two of our users have committed an in kind contribution to the
project trough involvement of personel: Axini will contribute 100 hours/year = e46,400 (senior
researcher) and Collis will contribute 70 hours/year = e32,480 (senior researcher).
8.6. Cost breakdown.

Total project costs e482.648
Total contribution in cash e0
Total contribution in kind e78,880
Requested from STW (STW-bijdrage) e403.768

8.7. Letters of support. Attached are letters of support from all members of the proposed user
committee, from prof. Steffen (Uni. Dortmund) and from prof. Jonsson (Uni. Uppsala).



STW proposal ITALIA 13

9 References

9.1 Selection of key publications research group
Some key publication of the group related to the proposal are [AJU10, ASV10, AV10, LV95,
LSV07, SVD01, HSV09, Wil07, Tre07, Tre08].

9.2 List of publications cited

References

[Aar09] F. Aarts. Inference and Abstraction of Communication Protocols. Master thesis,
Radboud University Nijmegen and Uppsala University, November 2009.

[ACV93] J. Alilovic-Curgus and S.T. Vuong. A metric based theory of test selection and
coverage. In A. Danthine, G. Leduc, and P. Wolper, editors, Protocol Specification,
Testing, and Verification XIII, pages 289–304. North-Holland, 1993.

[ACY95] R. Alur, C. Courcoubetis, and M. Yannakakis. Distinguishing tests for nondetermin-
istic and probabilistic machines. In Proceedings of the 27th Annual ACM Symposium
on Theory of Computing, pages 363–372. ACM, 1995.

[AHI+09] I. AlAttili, F. Houben, G. Igna, S. Michels, F. Zhu, and F.W. Vaandrager. Adap-
tive scheduling of data paths using Uppaal Tiga. In S. Andova et.al, editor, Pro-
ceedings First Workshop on Quantitative Formal Methods: Theory and Applications
(QFM’09), volume 13 of Electronic Proceedings in Theoretical Computer Science,
pages 1–12, 2009.

[AJ06] P.W. Adriaans and C. Jacobs. Using mdl for grammar induction. In Y. Sakak-
ibara, S. Kobayashi, K. Sato, T. Nishino, and E. Tomita, editors, Grammatical Infer-
ence: Algorithms and Applications, 8th International Colloquium, ICGI 2006, Tokyo,
Japan, September 20-22, 2006, Proceedings, volume 4201 of Lecture Notes in Com-
puter Science, pages 293–306. Springer, 2006.

[AJU10] F. Aarts, B. Jonsson, and J. Uijen. Generating models of infinite-state communication
protocols using regular inference with abstraction. In A. Petrenko, J.C. Maldonado,
and A. Simao, editors, 22nd IFIP International Conference on Testing Software and
Systems, Natal, Brazil, November 8-10, Proceedings. IFIP, 2010.

[Ang87] D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75(2):87–106, 1987.

[ARV+10] W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek, B.F. van Dongen, E. Kindler, and
C.W. Günther. Process mining: a two-step approach to balance between underfitting
and overfitting. Software and System Modeling, 9(1):87–111, 2010.

[ASV10] F. Aarts, J. Schmaltz, and F.W. Vaandrager. Inference and abstraction of the biomet-
ric passport. In Proceedings 4th International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA 2010), 18-20 October 2010 -
Amirandes, Heraclion, Crete (Track on Learning Techniques for Software Verification
and Validation)), 2010. To appear. Available via URL http://www.fidesaarts.de/.

[AV10] F. Aarts and F.W. Vaandrager. Learning i/o automata. In P. Gastin and
F. Laroussinie, editors, 21st International Conference on Concurrency Theory (CON-
CUR), Paris, France, August 31st - September 3rd, 2010, Proceedings, volume 6269
of Lecture Notes in Computer Science, pages 71–85. Springer, 2010.

[Axi] Axini. http://www.axini.com.



STW proposal ITALIA 14

[BDG97] J.L. Balcázar, J. Dı́az, and R. Gavaldà. Algorithms for learning finite automata from
queries: A unified view. In Advances in Algorithms, Languages, and Complexity,
pages 53–72, 1997.

[BDL+06] G. Behrmann, A. David, K. G. Larsen, J. H̊akansson, P. Pettersson, W. Yi, and
M. Hendriks. Uppaal 4.0. In Third International Conference on the Quantitative
Evaluation of SysTems (QEST 2006), 11-14 September 2006, Riverside, CA, USA,
pages 125–126. IEEE Computer Society, 2006.

[Bel10] A. Belinfante. JTorX: A Tool for On-Line Model-Driven Test Derivation and Ex-
ecution . In J. Esparza and R. Majumdar, editors, Tools and Algorithms for the
Construction and Analysis of Systems – TACAS 2010, volume 6015 of Lecture Notes
in Computer Science, pages 266–270. Springer, 2010.

[BGJ+05] T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, and B. Steffen. On the
correspondence between conformance testing and regular inference. In M. Cerioli,
editor, Fundamental Approaches to Software Engineering, 8th International Confer-
ence, FASE 2005, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings,
volume 3442 of Lecture Notes in Computer Science, pages 175–189. Springer, 2005.

[BGVZ10] J. Berendsen, B. Gebremichael, F.W. Vaandrager, and M. Zhang. Formal speci-
fication and analysis of zeroconf using Uppaal. ACM Transactions on Embedded
Computing Systems, 2010. To appear.

[BHKL09] B. Bollig, P. Habermehl, C. Kern, and M. Leucker. Angluin-style learning of nfa.
In Craig Boutilier, editor, IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009,
pages 1004–1009, 2009.

[BPV94] D.J.B. Bosscher, I. Polak, and F.W. Vaandrager. Verification of an audio control
protocol. In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, Proceedings
of the Third International School and Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems (FTRTFT’94), Lübeck, Germany, September 1994,
volume 863 of Lecture Notes in Computer Science, pages 170–192. Springer-Verlag,
1994.

[Bri93] E. Brinksma. On the coverage of partial validations. In M. Nivat, C.M.I. Rattray,
T. Rus, and G. Scollo, editors, AMAST’93, pages 247–254. BCS-FACS Workshops in
Computing Series, Springer-Verlag, 1993.

[BS93] J.P. Bowen and V. Stavridou. Safety-critical systems, formal methods and standards.
IEEE Software Engineering Journal, 8(4):189–209, 1993.

[BSHV03] H. Bohnenkamp, P. van der Stok, H. Hermanss, and F.W. Vaandrager. Cost-
optimisation of the IPv4 zeroconf protocol. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN2003), pages 531–540, Los
Alamitos, California, 2003. IEEE Computer Society.

[BvG+10] T. Basten, Benthum E. van, M. Geilen, M. Hendriks, F. Houben, G. Igna, F. Reckers,
Smet S. de, L. Somers, E. Teeselink, N. Trcka, F. Vaandrager, J. Verriet, M. Voorho-
eve, and Y. Yang. Model-driven design-space exploration for embedded systems: The
octopus toolset. In Proceedings 4th International Symposium On Leveraging Applica-
tions of Formal Methods, Verification and Validation (ISoLA 2010), 18-20 October
2010 - Amirandes, Heraclion, Crete (Track on Formal Languages and Methods for
Designing and Verifying Complex Engineering Systems), 2010. To appear.



STW proposal ITALIA 15

[CGJ+03] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

[CGN+05] C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and
M. Veanes. Testing concurrent object-oriented systems with spec explorer. In
J. Fitzgerald, I.J. Hayes, and A. Tarlecki, editors, FM 2005: Formal Methods, Inter-
national Symposium of Formal Methods Europe, Newcastle, UK, July 18-22, 2005,
Proceedings, volume 3582 of Lecture Notes in Computer Science, pages 542–547.
Springer, 2005.

[Cho78] T.S. Chow. Testing software design modeled by finite-state machines. IEEE Trans-
actions on Software Engineering, 4(3):178–187, 1978.

[CJRZ02] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. Stg: A symbolic test generation tool.
In J.-P. Katoen and P. Stevens, editors, Tools and Algorithms for the Construction
and Analysis of Systems – TACAS 2002, volume 2280 of Lecture Notes in Computer
Science, pages 151–173. Springer, 2002.

[CSH10] K. Claessen, N. Smallbone, and J. Hughes. QuickSpec: Guessing formal specifi-
cations using testing. In G. Fraser and A. Gargantini, editors, Tests and Proofs –
TAP 2010, volume 6143 of Lecture Notes in Computer Science, pages 6–21. Springer
Berlin / Heidelberg, 2010.

[dAH01] L. de Alfaro and T.A. Henzinger. Interface automata. In V. Gruhn, editor, Pro-
ceedings of the Joint 8th European Software Engineering Conference and 9th ACM
SIGSOFT Symposium on the Foundation of Software Engineering (ESEC/FSE-01),
volume 26 of Software Engineering Notes, pages 109–120, New York, September 2001.
ACM Press.

[Dal10] V. Dallmeier. Mining and Checking Object Behavior. PhD thesis, Saarland University,
August 2010.

[DGRV00] M.C.A. Devillers, W.O.D. Griffioen, J.M.T Romijn, and F.W. Vaandrager. Verifica-
tion of a leader election protocol: Formal methods applied to IEEE 1394. Formal
Methods in System Design, 16(3):307–320, June 2000.

[EPG+07] M.D. Ernst, J.H. Perkins, P.J. Guo, S. McCamant, C. Pacheco, M.S. Tschantz, and
C. Xiao. The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming, 69(1-3):35–45, 2007.

[FGMT02] L.M.G. Feijs, N. Goga, S. Mauw, and J. Tretmans. Test Selection, Trace Distance
and Heuristics. In I. Schieferdecker, H. König, and A. Wolisz, editors, Testing of
Communicating Systems XIV, pages 267–282. Kluwer Academic Publishers, 2002.

[FTW06] L. Frantzen, J. Tretmans, and T.A.C. Willemse. A symbolic framework for model-
based testing. In K. Havelund, M. Núñez, G. Rosu, and B. Wolff, editors, Formal
Approaches to Software Testing and Runtime Verification, First Combined Interna-
tional Workshops, FATES 2006 and RV 2006, Seattle, WA, USA, August 15-16,
2006, Revised Selected Papers, volume 4262 of Lecture Notes in Computer Science,
pages 40–54. Springer, 2006.

[GJP06] O. Grinchtein, B. Jonsson, and P. Pettersson. Inference of event-recording automata
using timed decision trees. In C. Baier and H. Hermanns, editors, CONCUR 2006 -
Concurrency Theory, 17th International Conference, Bonn, Germany, August 27-30,
2006, Proceedings, volume 4137 of Lecture Notes in Computer Science, pages 435–449.
Springer, 2006.



STW proposal ITALIA 16

[GLM08] P. Godefroid, M.Y. Levin, and D.A. Molnar. Automated whitebox fuzz testing.
In Proceedings of the Network and Distributed System Security Symposium, NDSS
2008, San Diego, California, USA, 10th February - 13th February 2008. The Internet
Society, 2008.

[GV03] B. Gebremichael and F.W. Vaandrager. Control synthesis for a smart card person-
alization system using symbolic model checking. In Proceedings First International
Workshop on Formal Modeling and Analysis of Timed Systems (FORMATS 2003),
September 6-7 2003, Marseille, France, volume 2791 of Lecture Notes in Computer
Science. Springer-Verlag, 2003.

[Hig10] C. de la Higuera. Grammatical Inference: Learning Automata and Grammars. Cam-
bridge University Press, April 2010.

[HLM+08] A. Hessel, K.G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and A. Skou.
Testing Real-Time Systems Using UPPAAL. In R.M. Hierons, J.P. Bowen, and
M. Harman, editors, Formal Methods and Testing, volume 4949 of Lecture Notes in
Computer Science, pages 77–117. Springer-Verlag, 2008.

[HM06] M. Heemels and G. Muller, editors. Model-based design of high-tech systems, Eind-
hoven, the Netherlands, March 2006. Embedded Systems Institute.

[HN04] A. Hartman and K. Nagin. The AGEDIS Tools for Model Based Testing. In Int.
Symposium on Software Testing and Analysis – ISSTA 2004, pages 129–132. ACM
Press, 2004.

[HNS03] H. Hungar, O. Niese, and B. Steffen. Domain-specific optimization in automata learn-
ing. In W.A. Hunt Jr. and F. Somenzi, editors, Computer Aided Verification, 15th
International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceed-
ings, volume 2725 of Lecture Notes in Computer Science, pages 315–327. Springer,
2003.

[HSM10] F. Howar, B. Steffen, and M. Merten. From ZULU to RERS. In T. Margaria and
B. Steffen, editors, Leveraging Applications of Formal Methods, Verification, and Val-
idation, volume 6415 of Lecture Notes in Computer Science, pages 687–704. Springer,
2010.

[HSM11] F. Howar, B. Steffen, and M. Merten. Automata Learning with Automated Alphabet
Abstraction Refinement. In Verification, Model Checking, and Abstract Interpretation
(VMCAI’11), January 23-25, 2011, Austin, Texas, USA, 2011. To appear.

[HSV94] L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof-checking a data link pro-
tocol. In H. Barendregt and T. Nipkow, editors, Proceedings International Workshop
TYPES’93, Nijmegen, The Netherlands, May 1993, volume 806 of Lecture Notes in
Computer Science, pages 127–165. Springer-Verlag, 1994.

[HSV09] F. Heidarian, J. Schmaltz, and F.W. Vaandrager. Analysis of a clock synchronization
protocol for wireless sensor networks. In A. Cavalcanti and D. Dams, editors, Pro-
ceedings 16th International Symposium of Formal Methods (FM2009), Eindhoven,
the Netherlands, November 2-6, 2009, volume 5850 of Lecture Notes in Computer
Science, pages 516–531. Springer, 2009.

[HT99] J. He and K.J. Turner. Protocol-Inspired Hardware Testing. In G. Csopaki, S. Dibuz,
and K. Tarnay, editors, Int. Workshop on Testing of Communicating Systems 12,
pages 131–147. Kluwer Academic Publishers, 1999.



STW proposal ITALIA 17

[HvdNV03] M. Hendriks, N.J.M. van den Nieuwelaar, and F.W. Vaandrager. Recognizing finite
repetitive scheduling patterns in manufacturing systems. In G. Kendall, E. Burke, and
S. Petrovic, editors, Proceedings of the 1st Multidisciplinary International Conference
on Scheduling: Theory and Applications (MISTA 2003), Nottingham, UK, Volume
I, pages 291–319. The University of Nottingham, August 2003. ISBN 0-9545821-0-1.

[HvdNV06] M. Hendriks, N. J. M. van den Nieuwelaar, and F. W. Vaandrager. Model checker
aided design of a controller for a wafer scanner. Software Tools for Technology Trans-
fer, 8(6):633–647, 2006. Special Section on Quantitative Analysis of Real-time Em-
bedded Systems.

[IKY+08] G. Igna, V. Kannan, Y. Yang, T. Basten, M. Geilen, F. Vaandrager, M. Voorho-
eve, S. de Smet, and L. Somers. Formal modeling and scheduling of datapaths of
digital document printers. In Proceedings Sixth International Conference on For-
mal Modeling and Analysis of Timed Systems (FORMATS 2008), September 15-17,
2008, Saint-Malo, France, volume 5215 of Lecture Notes in Computer Science, pages
169–186. Springer Berlin / Heidelberg, 2008.

[Int97] International Telecommunication Union – Telecommunication Standardization Sector
of ITU. ITU-T Recommendation Z.500: Framework on Formal Methods in Confor-
mance Testing. Series Z: Programming Languages – Methods for Validation and
Testing. ITU-T, Geneve, May 1997. Also: ISO/IEC JTC1/SC21 WG7 CD 13245-1.

[JJ05] C. Jard and T. Jéron. TGV: Theory, Principles and Algorithms: A Tool for the Auto-
matic Synthesis of Conformance Test Cases for Non-Deterministic Reactive Systems.
Software Tools for Technology Transfer, 7(4):297–315, 2005.

[KATP03] P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic Auto-
mated Software Testing. In R. Peña, editor, IFL 2002 – Implementation of Functional
Programming Languages, volume 2670 of Lecture Notes in Computer Science, pages
84–100. Springer-Verlag, 2003.

[Kel76] R.M. Keller. Formal verification of parallel programs. Communications of the ACM,
19(7):371–384, 1976.

[KNSP09] G. Kovács, G.A. Németh, M. Subramaniam, and Z. Pap. Optimal string edit dis-
tance based test suite reduction for SDL specifications. In R. Reed, A. Bilgic, and
R. Gotzhein, editors, SDL 2009: Design for Motes and Mobiles, volume 5719 of
Lecture Notes in Computer Science, pages 82–97. Springer, 2009.

[KPGSG09] T. Kanstrén, E. Piel, A. Gonzalez-Sanchez, and H.-G. Gross. Observation-Based
Modeling for Testing and Verifying Highly Dependable Systems – A Practitioner’s
Approach. In A Wagner, editor, Workshop on Design of Dependable Critical Systems
at Safecomp 2009, Hamburg, Germany, September 2009. 18 pages.

[Leu06] M. Leucker. Learning meets verification. In F.S. de Boer, M. M. Bonsangue, S. Graf,
and W.P. de Roever, editors, Formal Methods for Components and Objects, 5th In-
ternational Symposium, FMCO 2006, Amsterdam, The Netherlands, November 7-10,
2006, Revised Lectures, volume 4709 of Lecture Notes in Computer Science, pages
127–151. Springer, 2006.

[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Boujjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6(1):11–44, 1995.

[LMP08] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of software behavioral
models. In ICSE ’08: Proceedings of the 30th international conference on Software
engineering, pages 501–510, New York, NY, USA, 2008. ACM.



STW proposal ITALIA 18

[LSV07] L.Cheung, M. Stoelinga, and F.W. Vaandrager. A testing scenario for probabilistic
processes. J. ACM, 54(6), 2007.

[LT87] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algo-
rithms. In Proceedings of the 6th Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 137–151, August 1987. A full version is available as MIT
Technical Report MIT/LCS/TR-387.

[LV95] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations, I: Untimed
systems. Information and Computation, 121(2):214–233, September 1995.

[LY96] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
— a survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[Mei10] K. Meinke. CGE: A sequential learning algorithm for Mealy automata. In J.M.
Sempere and P. Garćıa, editors, Grammatical Inference: Theoretical Results and
Applications, 10th International Colloquium, ICGI 2010, Valencia, Spain, September
13-16, 2010. Proceedings, volume 6339 of Lecture Notes in Computer Science, pages
148–162. Springer, 2010.

[MNRS04] T. Margaria, O. Niese, H. Raffelt, and B. Steffen. Efficient test-based model gen-
eration for legacy reactive systems. In HLDVT ’04: Proceedings of the High-Level
Design Validation and Test Workshop, 2004. Ninth IEEE International, pages 95–
100, Washington, DC, USA, 2004. IEEE Computer Society.

[Moo56] E.F. Moore. Gedanken-experiments on sequential machines. In Automata Studies,
volume 34 of Annals of Mathematics Studies, pages 129–153. Princeton University
Press, 1956.

[MP05] L. Mariani and M. Pezzè. Behaviour Capture and Test: Automated Analysis of Com-
ponent Integration. In 10th IEEE Int. Conf. on Engineering of Complex Computer
Systems – ICECCS’05, pages 292–301. IEEE Computer Society, 2005.

[MPS+09] W. Mostowski, E. Poll, J. Schmaltz, J. Tretmans, and R. Wichers Schreur. Model-
Based Testing of Electronic Passports. In M. Alpuente, B. Cook, and C. Joubert,
editors, Formal Methods for Industrial Critical Systems – FMICS 2009, volume 5825
of Lecture Notes in Computer Science, pages 207–209. Springer-Verlag, 2009.

[MWVS07] M. Mekking, W. Wijngaards, F.W. Vaandrager, and T. Schouten. Formalizing
shim6, a proposed internet standard in uppaal. In VVSS 2007 (verification and val-
idation of softwaresystems) symposium, Eindhoven, March 2007. University of Tech-
nology.

[NVS+04] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and W. Grieskamp. Optimal
strategies for testing nondeterministic systems. In G.S. Avrunin and G. Rothermel,
editors, Proceedings of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2004, Boston, Massachusetts, USA, July 11-14, 2004,
pages 55–64. ACM, 2004.

[OHM10] Point One, HTAS, and M2I. Visiedocument hightech systems & materials, May 2010.

[PVY02] D. Peled, M.Y. Vardi, and M. Yannakakis. Black Box Checking. Journal of Automata,
Languages, and Combinatorics, 7(2):225–246, 2002.

[RMSM09] H. Raffelt, M. Merten, B. Steffen, and T. Margaria. Dynamic testing via automata
learning. STTT, 11(4):307–324, 2009.



STW proposal ITALIA 19

[RS89] R.L. Rivest and R.E. Schapire. Inference of finite automata using homing sequences
(extended abstract). In Proceedings of the Twenty-First Annual ACM Symposium on
Theory of Computing, 15-17 May 1989, Seattle, Washington, USA, pages 411–420.
ACM, 1989.

[RSB05] H. Raffelt, B. Steffen, and T. Berg. Learnlib: a library for automata learning and
experimentation. In FMICS ’05: Proceedings of the 10th international workshop on
Formal methods for industrial critical systems, pages 62–71, New York, NY, USA,
2005. ACM Press.

[RSBM09] H. Raffelt, B. Steffen, T. Berg, and T. Margaria. Learnlib: a framework for extrap-
olating behavioral models. STTT, 11(5):393–407, 2009.

[ST09] M.I.A. Stoelinga and M. Timmer. Interpreting a successful testing process: Risk
and actual coverage. Joint IEEE/IFIP Symp. on Theoretical Aspects of Software
Engineering – TASE’09, pages 251–258, 2009.

[SV99] M.I.A. Stoelinga and F.W. Vaandrager. Root contention in IEEE 1394. Techni-
cal Report CSI-R9905, Computing Science Institute, University of Nijmegen, March
1999.

[SVD01] J. Springintveld, F.W. Vaandrager, and P.R. D’Argenio. Testing timed automata.
Theor. Comput. Sci., 254(1-2):225–257, 2001.

[SZHV09] M. Schuts, F. Zhu, F. Heidarian, and F.W. Vaandrager. Modelling clock synchro-
nization in the Chess gMAC WSN protocol. In S. Andova et.al, editor, Proceedings
Workshop on Quantitative Formal Methods: Theory and Applications (QFM’09),
volume 13 of Electronic Proceedings in Theoretical Computer Science, pages 41–54,
2009.

[TB03] J. Tretmans and E. Brinksma. TorX : Automated Model Based Testing. In A. Hart-
man and K. Dussa-Zieger, editors, First European Conference on Model-Driven Soft-
ware Engineering. Imbuss, Möhrendorf, Germany, December 11-12 2003. 13 pages.

[Tre92] J. Tretmans. A Formal Approach to Conformance Testing. PhD thesis, University of
Twente, Enschede, The Netherlands, 1992.

[Tre96] J. Tretmans. Test generation with inputs, outputs, and repetitive quiescence.
Software–Concepts and Tools, 17:103–120, 1996.

[Tre07] J. Tretmans, editor. Tangram: Model-Based Integration and Testing of Complex
High-Tech Systems, Eindhoven, The Netherlands, 2007. Embedded Systems Institute.

[Tre08] J. Tretmans. Model based testing with labelled transition systems. In R.M. Hierons,
J.P. Bowen, and M. Harman, editors, Formal Methods and Testing, An Outcome of
the FORTEST Network, Revised Selected Papers, volume 4949 of Lecture Notes in
Computer Science, pages 1–38. Springer, 2008.

[Ver10] S. Verwer. Efficient Identification of Timed Automata — Theory and Practice. PhD
thesis, Delft University of Technology, March 2010.

[Vil96] J.M. Vilar. Query learning of subsequential transducers. In L. Miclet and C. de la
Higuera, editors, Grammatical Inference: Learning Syntax from Sentences, 3rd In-
ternational Colloquium, ICGI-96, Montpellier, France, September 25-27, 1996, Pro-
ceedings, volume 1147 of Lecture Notes in Computer Science, pages 72–83. Springer,
1996.



STW proposal ITALIA 20

[VRC06] M. Veanes, P. Roy, and C. Campbell. Online testing with reinforcement learning.
In K. Havelund, M. Núñez, G. Rosu, and B. Wolff, editors, Formal Approaches to
Software Testing and Runtime Verification, First Combined International Workshops,
FATES 2006 and RV 2006, Seattle, WA, USA, August 15-16, 2006, Revised Selected
Papers, volume 4262 of Lecture Notes in Computer Science, pages 240–253. Springer,
2006.

[VVP10] R. te Velde, J. Veltkamp, and M. Plomp. De softwaresector in Nederland — survey
2010. Publicatienummer 2010.002-1018, Dialogic, Utrecht, 2010.

[Wil07] T.A.C. Willemse. Heuristics for ioco-based test-based modelling. In L. Brim, B.R.
Haverkort, M. Leucker, and J. van de Pol, editors, Formal Methods: Applications and
Technology, 11th International Workshop, FMICS 2006 and 5th International Work-
shop PDMC 2006, Bonn, Germany, August 26-27, and August 31, 2006, Revised
Selected Papers, volume 4346 of Lecture Notes in Computer Science, pages 132–147.
Springer, 2007.

[Yok94] T. Yokomori. Learning non-deterministic finite automata from queries and coun-
terexamples. In Machine Intelligence 13, pages 169–189, 1994.


